Crystal and Molecular Structure of μ-Trimethylsilylcycloheptatrienyl-pentacarbonyltrimethylsilyldiruthenium(Ru-Ru):A Binuclear Metal Complex with a Bridging Cycloheptatrienyl Ligand

By Judith Howard and Peter Woodward, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Abstract

Crystals of the title compound are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with $Z=4$ in a unit cell of dimensions: $a=10.355(2), b=12 \cdot 380(5), c=17 \cdot 580(5) A \AA$. The structure was determined by direct methods from diffractometer data and refined to $R 0.049$ for 2024 independent reflections. The two ruthenium atoms are bonded to one another [Ru-Ru $2.937(2) \AA$] and to the cycloheptatrienyl ring; four of the carbon ring atoms effectively comprise a diene system bonded (somewhat asymmetrically) to $\mathrm{Ru}(1)$, while the other three carbon atoms form an allyl group bonded to Ru(2). The interplanar angle between the diene and aliyl fragments is 57°. The central chain of the molecule comprises the sequence $\mathrm{OC}-\mathrm{Ru}-\mathrm{Ru}-\mathrm{SiMe}_{3}$; the $\mathrm{O}-\mathrm{C}-\mathrm{Ru}-\mathrm{Ru}$ chain is almost linear, but the silyl group is bent away from the C_{7} ring to give Ru-Ru-Si $173^{\circ}[\operatorname{Ru}-\mathrm{Si} 2 \cdot 456(4) \AA$. The two equatorial carbonyl groups on each Ru atom are approximately orthogonal to one another and are in an eclipsed configuration.

Bridging cycloheptatrienyl complexes may be formed ${ }^{1}$ by the reaction of cyclohepta-1,3,5-triene or of its 7 substituted derivatives with $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{4}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right]$. Crystals of the title compound were formed as a minor product in a reaction which used unsubstituted cycloheptatriene as the starting material; the structural results therefore not only establish the molecular configuration of the product but also show that migration of a trimethylsilyl group from the metal to the ring must have occurred during the formation of the compound.

EXPERIMENTAL

Crystals of $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{5}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{SiMe}_{3}\right)\right]$ grow as orange prisms. Diffracted intensities were collected from a crystal of dimensions $0.37 \times 0.25 \times 0.85 \mathrm{~mm}$ on a Syntex $P 2_{1}$ fourcircle diffractometer according to methods described earlier. ${ }^{2}$ Of the total 2680 reflections (complete for $3.7^{\circ}<2 \theta<$ 50.0°), 2024 were deemed 'observed' according to the criterion $I>2 \cdot 5 \sigma(I)$.

RESULTS

Crystal Data.- $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Ru}_{2} \mathrm{Si}_{2}, M=578 \cdot 5$, Orthorhombic, $a=10.355(2), b=12 \cdot 380(5), c=17.580(5) \AA, Z=4$, $D_{\mathrm{c}}=1.70 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.67 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=1152$. Space group $P 2_{1} 2_{1} 2_{1}$. Mo- $K_{\alpha} X$-radiation (graphite monochromator), $\lambda=0.71069 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=13.2 \mathrm{~cm}^{-1}$.

The structure was solved by direct methods, ${ }^{3}$ and in the final refinement (by full-matrix least-squares) anisotropic thermal parameters were used for the two ruthenium and the two silicon atoms only. Weights were applied according to the scheme $1 / w=\sigma(F)^{2}$. Hydrogen atoms were incorporated at positions estimated from the electron-density maps, but neither their positional nor thermal parameters were refined. The refinement converted to $R 0.049$ ($R^{\prime} 0.058$), and a final electron-density synthesis showed no peaks >0.8 or $<-0.6 \mathrm{e} \AA^{-3}$. Bond lengths and angles with their respective standard deviations were computed from the variancecovariance matrix obtained in the last refinement cycle. Positional and thermal parameters are in Table 1, interatomic distances in Table 2, and some torsion angles in Table 3. No absorption correction was applied, and the atomic scattering factors used were those of ref. 4. All

[^0]computational work was carried out at the University of London Computing Centre with the ' X-Ray System' of programs. ${ }^{3}$ Observed and calculated structure factors,

TABLE 1
Atomic positional and thermal parameters with standard deviations in parentheses*

Atom	x / a	y / b	z / c	$10^{2} U / \AA^{2}$
$\mathrm{Ru}(1)$	$0 \cdot 75220$ (9)	$0 \cdot 29192(7)$	$0 \cdot 12915(5)$	\dagger
$\mathrm{Ru}(2)$	$0 \cdot 72649$ (9)	$0 \cdot 12561(7)$	$0 \cdot 24734(5)$	\dagger
Si(1)	$0 \cdot 7569$ (4)	$0 \cdot 4454(3)$	$0 \cdot 0411(2)$	
$\mathrm{Si}(2)$	$0 \cdot 7866$ (3)	-0.1082(3)	$0 \cdot 1283$ (2)	
C(101)	$0 \cdot 9015(17)$	0.5308(14)	$0 \cdot 0496(10)$	$6 \cdot 5(5)$
$\mathrm{C}(102)$	$0 \cdot 6122(15)$	$0.5379(13)$	$0.0558(9)$	$5 \cdot 0(4)$
C(103)	$0 \cdot 7508(16)$	$0 \cdot 4065(10)$	-0.0647(7)	$5 \cdot 0(3)$
$\mathrm{C}(201)$	$0 \cdot 7076(14)$	-0.2031(11)	$0 \cdot 1968$ (8)	$5 \cdot 4(4)$
C(202)	$0 \cdot 7533(16)$	$-0.1511(11)$	0.0287(8)	$6 \cdot 2(4)$
$\mathrm{C}(203)$	$0.9683(15)$	--0.1110(12)	$0 \cdot 1488$ (9)	$6 \cdot 5(4)$
C(11)	0.9326 (12)	$0 \cdot 3060(10)$	$0 \cdot 1312(7)$	$4 \cdot 1$ (3)
$\mathrm{O}(11)$	$1.0434(9)$	$0 \cdot 3112(8)$	$0 \cdot 1325$ (6)	$6 \cdot 0(3)$
C(12)	$0.7282(12)$	$0 \cdot 4039(10)$	$0 \cdot 1978$ (7)	$4 \cdot 0(3)$
$\mathrm{O}(12)$	$0 \cdot 7098(10)$	0.4757(8)	$0 \cdot 2384$ (5)	$6 \cdot 1(3)$
C(21)	$0.9102(13)$	$0 \cdot 1320(11)$	0.2586(8)	$5 \cdot 3(3)$
$\mathrm{O}(21)$	$1 \cdot 0209(11)$	$0 \cdot 1296(9)$	$0 \cdot 2580(7)$	$8 \cdot 1(3)$
$\mathrm{C}(22)$	$0 \cdot 6924(14)$	$0 \cdot 2392(11)$	$0 \cdot 3178(8)$	$5 \cdot 0(4)$
$\mathrm{O}(22)$	$0 \cdot 6614(12)$	$0 \cdot 3036(9)$	$0 \cdot 3608(7)$	7-7(4)
$\mathrm{C}(23)$	$0 \cdot 7062(13)$	$0 \cdot 0176(10)$	$0 \cdot 3205(7)$	$4 \cdot 4(3)$
$\mathrm{O}(23)$	0.6941 (10)	-0.0475(8)	$0 \cdot 3694$ (6)	$6 \cdot 4(3)$
$\mathrm{C}(1)$	$0 \cdot 6904(11)$	$0 \cdot 1814$ (9)	0.0380 (7)	3.6(3)
$\mathrm{C}(2)$	$0.7601(11)$	0.1091(8)	$0.0846(6)$	$2 \cdot 9(2)$
C(3)	$0.7159(11)$	$0 \cdot 0308(9)$	$0 \cdot 1375$ (6)	$3 \cdot 0(3)$
$\mathrm{C}(4)$	$0 \cdot 5890$ (11)	$0.0431(10)$	$0 \cdot 1745$ (7)	$3 \cdot 2(3)$
$\mathrm{C}(5)$	$0.5311(12)$	$0 \cdot 1430(10)$	$0 \cdot 1851$ (7)	$3 \cdot 3(3)$
$\mathrm{C}(6)$	$0.5413(11)$	$0.2365(9)$	$0 \cdot 1379(7)$	$3 \cdot 4(3)$
C(7)	$0.5836(13)$	$0 \cdot 2423(10)$	0.0617(8)	$3 \cdot 9(3)$
* $B=8 \pi^{2} U . \quad \dagger$ Anisotropic thermal parameters ($\times 10^{2}$) in				
the form: $\exp \left\{-2 \pi^{2}\left[U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+\right.\right.$ $\left.\left.2 U_{12} a^{*} b^{*} h k+2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right]\right\}$.				
Atom				
$\mathrm{Ru}(1)$				
$\mathrm{Ru}(2)$	$4 \cdot 61$	(6) $3 \cdot 62$	5) $2 \cdot 36$	
Si(1)	$4 \cdot 61$	19) 2.96	17) $3 \cdot 37$	
Si(2)			17) $3 \cdot 10$	
Atom				
$\mathrm{Ru}(1)$	-0.01		4) $\quad-0.05$	
$\mathrm{Ru}(2)$	-0.09) 0.08	4) $0 \cdot 17$	
Si(1)	-0.05	7) -0.04	19) $\quad-0.67$	
$\mathrm{Si}(2)$	0.41	14) 0.74	15) $0 \cdot 40$	

together with the hydrogen atom parameters, are listed in Supplementary Publication No. SUP 21151 (12 pp., 1 nicrofiche).*
${ }^{3}$ Technical Report TR 192, Computer Science Centre, University of Maryland, June 1972.
${ }^{4}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.

Table 2
Bond lengths (\AA) and angles $\left(^{\circ}\right)$
(a) Distances
(i) $\mathrm{Ru}_{2}(\mathrm{CO})_{5} \mathrm{SiMc}_{3}$ group

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	9.937(1)	$\mathrm{C}(12)-\mathrm{O}(12)$
$\mathrm{Ru}(1)-\mathrm{Si}(1)$	$2.452(3)$	$\mathrm{Ru}(2)-\mathrm{C}(21)$
$\mathrm{Si}(1)-\mathrm{C}(101)$	1.839(18)	$\mathrm{C}(21)-\mathrm{O}(21)$
$\mathrm{Si}(1)-\mathrm{C}(102)$	1.903(16)	$\mathrm{Ru}(2)-\mathrm{C}(22)$
$\mathrm{Si}(1)-\mathrm{C}(103)$	$1.923(13)$	$\mathrm{C}(22)-\mathrm{O}(22)$
$\mathrm{Ru}(1)-\mathrm{C}(11)$	$1 \cdot 876(12)$	$\mathrm{Ru}(2)-\mathrm{C}(23)$
$\mathrm{C}(11)-\mathrm{O}(11)$	1-150(16)	$\mathrm{C}(23)-\mathrm{O}(23)$
$\mathrm{Ku}(1)-\mathrm{C}(12)$	$1 \cdot 855(12)$	
(ii) $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{SiMe}_{3}\right)$ ring		
$\mathrm{C}(1)-\mathrm{C}(2)$	1-412(16)	$\mathrm{Ru}(1)-\mathrm{C}(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 420$ (15)	$\mathrm{Ru}(1)-\mathrm{C}(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1-474(16)	$\mathrm{Ru}(1)-\mathrm{C}(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1-386(17)	$\mathrm{Ku}(1)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1-427(17)	$\mathrm{Ru}(2)-\mathrm{C}(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1-412(18)	$\mathrm{Ru}(2)-\mathrm{C}(3)$
$\mathrm{C}(7)-\mathrm{C}(1)$	1-402(18)	$\mathrm{Ru}(2)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{Si}(2)$	1-876(12)	$\mathrm{Ru}(2)-\mathrm{C}(5)$
(b) Angles		
$\mathrm{Si}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	172.7(1)	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{O}(12)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(23)$	178.1(4)	$\mathrm{Ru}(2)-\mathrm{C}(21)-\mathrm{O}(21)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(21)$	87-3(4)	$\mathrm{Ru}(2)-\mathrm{C}(22)-\mathrm{O}(22)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(22)$	87.7(4)	$\mathrm{Ru}(2)-\mathrm{C}(23)-\mathrm{O}(23)$
$\mathrm{C}(21)-\mathrm{Ru}(2)-\mathrm{C}(22)$	$94 \cdot 9(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(21)-\mathrm{Ru}(2)-\mathrm{C}(23)$	$94 \cdot 0$ (6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(2 \mathbf{2})-\mathrm{Ru}(2)-\mathrm{C}(23)$	$93 \cdot 4(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$98 \cdot 1$ (4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$92 \cdot 9(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
C(11)-Ru(1)-C(12)	$93 \cdot 0(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{Si}(1)$	85.5(4)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{Si}(1)$	80.5(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Si}(2)$
$\mathrm{K} \mathbf{u}(1)-\mathrm{Si}(1)-\mathrm{C}(101)$	114.2(6)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Si}(2)$
$\mathrm{Ru}(1)-\mathrm{Si}(1)-\mathrm{C}(102)$	111.4(5)	$\mathrm{C}(3)-\mathrm{Si}(2)-\mathrm{C}(201)$
$\mathrm{Ku}(1)-\mathrm{Si}(1)-\mathrm{C}(103)$	114.6(4)	$\mathrm{C}(3)-\mathrm{Si}(2)-\mathrm{C}(202)$
C(101)-Si(1)-C(102)	106.5(8)	$\mathrm{C}(3)-\mathrm{Si}(2)-\mathrm{C}(203)$
$\mathrm{C}(101)-\mathrm{Si}(1)-\mathrm{C}(103)$	104.5(7)	$\mathrm{C}(201)-\mathrm{Si}(2)-\mathrm{C}(202)$
$\mathrm{C}(102)-\mathrm{Si}(1)-\mathrm{C}(103)$	104.9(7)	$\mathrm{C}(201)-\mathrm{Si}(2)-\mathrm{C}(203)$
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	177.9(11)	$\mathrm{C}(202)-\mathrm{Si}(2)-\mathrm{C}(203)$

I•156(16)
1.914(13)

I•147(18)
I.906(14)
$1 \cdot 145(18)$
I•868(13)
$1 \cdot 185(16)$
$2 \cdot 396(10)$
2.202(12)
$2 \cdot 198(13)$
2.295(12)
2.890(10)
2.262(11)
2.170(12)
$2 \cdot 310(12)$
177.1(11)
$172 \cdot 5(13)$
$174 \cdot 0(13)$
177.0(11)
$130 \cdot 4(11)$
120.4(10)
122.5(11)

127•8(11)
$128 \cdot 0(11)$
$120 \cdot 0(12)$
$124 \cdot 9(11)$
$116 \cdot 3(8)$
$118 \cdot 8(8)$
$110.5(6)$
$105 \cdot 7(6)$
$112 \cdot 6(6)$
$110.2(6)$
$107 \cdot 2(7)$
$110.7(7)$

Table 3
Torsion angles $\left({ }^{\circ}\right)$ around the C_{7} ring

$\mathrm{C}(1)-(2)-(3)-(4)$	$-24 \cdot 6$	$\mathrm{C}(5)-(6)-(7)-(1)$	$-41 \cdot 5$
$\mathrm{C}(2)-(3)-(4)-(5)$	$-26 \cdot 6$	$\mathrm{C}(6)-(7)-(1)-(2)$	$2 \cdot 6$
$\mathrm{C}(3)-(4)-(5)-(6)$	$32 \cdot 0$	$\mathrm{C}(7)-(1)-(2)-(3)$	$42 \cdot 8$

discussion

The overall configuration of the molecule, and the atom numbering system, are given in Figure 1. The molecule contains an almost linear spine, $\mathrm{Si}-\mathrm{Ru}-\mathrm{Ru}-\mathrm{C}-\mathrm{O}$, in addition to which each ruthenium atom carries two carbonyl groups orthogonally related to one another and in an eclipsed configuration with respect to the molecular axis. For this portion of the molecule, therefore, the plane through the two ruthenium atoms bisecting the equatorial carbonyl directions is an approximate mirror plane. The C_{7} ring is not symmetrically related to this plane: atoms $\mathrm{C}(\mathrm{I})-(3)$ lie on one side of it, and atoms $\mathrm{C}(4)$-(7) on the other (Figure 1). The SiMe_{3} ring ligand is attached to C(3) with all bonds close to tetrahedral.*

The mode of bonding between the C_{7} ring and the two

[^1](bonded) ruthenium atoms is best considered from the $\mathrm{Ru}-\mathrm{C}$ distances. Three of the ring atoms form effectively a π-allyl group, $\mathrm{C}(3)$-(5), directly bonded to $\mathrm{Ru}(2)$ at $2 \cdot 26(1), 2 \cdot 17(1)$, and $2 \cdot 31(1) \AA ; C(3)$ is the carbon atom to which the trimethylsilyl group is attached. The other four ring atoms are substantially coplanar and can be considered to form a diene system $[\mathrm{C}(2)-\mathrm{C}(1)$ and $\mathrm{C}(6)-\mathrm{C}(7)]$ directly bonded to $\mathrm{Ru}(\mathrm{l})$ at $2 \cdot 40(1), 2 \cdot 20(1)$, $2 \cdot 29(1)$, and $2 \cdot 20(1) \AA$. The $\mathrm{Ru}(1)-\mathrm{C}(2)$ distance is the longest of these 'bonded ' distances because, although the $\mathrm{Ru}(2)-\mathrm{C}(2)$ distance must be reckoned, at $2 \cdot 89(1) \AA$, as non-bonding, an equality between these two distances would change the formal description of the bonding from ' π-allyl/diene' to ' π-allyl/bridging C/ π-allyl.' Indeed, the latter type of bonding between a $\mathrm{C}_{7} \mathrm{H}_{7}$ ring and two Ru atoms of a triangular cluster has recently been established for $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{6}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right]^{5}$ and for $\left[\mathrm{Ru}_{2} \mathrm{I}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Ph}\right)\right]^{6}$ The bonding in the title compound could

Ligure 1 The $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{5}\left(\mathrm{SiMc}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{SiMc}_{3}\right)\right]$ molecule, showing the atom numbering system
thus be said to veer slightly away from the idealised $\pi-$ allyl/diene situation towards the more symmetrical one described for $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{6}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right]$. The $\mathrm{C}-\mathrm{C}$ distances around the ring are not measured sufficiently accurately to enable individual bond-orders to be evaluated, but suggest extensive delocalisation. The C_{7} ring as a whole is distorted to the extent that the angle between the allyl and diene fragments becomes 57°. Torsion angles around the ring are listed in Table 3.

Along the central $\mathrm{O}-\mathrm{C}-\mathrm{Ru}-\mathrm{Ru}-\mathrm{Si}$ spine the bond angles (Table 2) show that the sequence is significantly non-linear, most markedly in the case of the SiMe_{3} group for which $\mathrm{Ru}^{-} \mathrm{Ru}-\mathrm{Si}$ is 173°, and the deviation is away from the C_{7} ring. The $\mathrm{Ru}-\mathrm{Ru}$ distance ($2.937 \AA$) is rather long for a single bond, ${ }^{7}$ but on the traditional view of bonding in electronic structures each Ru atom has the residual capacity to react with ligands requiring two orbitals and providing three electrons to $\mathrm{Ru}(2)$ and four to $\mathrm{Ru}(\mathrm{l})$. This is achieved via the C_{7} ring in the form of the allyl group to $\mathrm{Ru}(2)$ and the diene moiety to $\mathrm{Ru}(1)$. In contrast, the $\mathrm{Ru}(\mathbf{l})-\mathrm{Si}(\mathbf{l})$ bond length $(2 \cdot 452 \AA)$ is rather short for a single bond if the radii of Si and Ru are taken as $\mathrm{I} \cdot 17$ and $\mathrm{I} \cdot 42 \AA$, and the $\mathrm{Ru}-\mathrm{Si}^{-\mathrm{C}}$ angles (Table
${ }^{6}$ J. A. K. Howard and P. Woodward, unpublished work.

- F. A. Cotton and W. T. Edwards, I. Amer. Chem. Soc., 1968, 90, 5412.

2) of the terminal SiMe_{3} group are all less than the regular tetrahedral value. In contrast, the SiMe_{3} ligand which is attached to $C(3)$ of the C_{7} ring has bond angles which are all regular.

Figure 2 One unit cell seen in projection down c
The Carbonyl Ligands.-The mean C-O distance for the molecule is $1 \cdot 15_{6} \AA$ and calls for no comment. In many
${ }^{8}$ R. Bau, S. W. Kirtley, T. N. Sorrell, and S. Winarko, J. Amer. Chem. Soc., 1974, 96, 988, and refs. therein.
polynuclear carbonyls it is found that axial are significantly shorter than equatorial M-C distances, and that the latter on terminal metal atoms tend to bend towards the centre of the molecule. ${ }^{8}$ The asymmetry introduced into the title compound both by the C_{7} ring and by the spinal SiMe_{3} group apparently interferes with both these generalisations, as the axial $\mathrm{M}-\mathrm{C}$ distance $[\mathrm{Ru}(2)-$ $\mathrm{C}(23) 1.868 \AA$] is hardly significantly different from the mean equatorial M-C distance ($1.888 \AA$), and whereas the equatorial carbonyl groups on atom $\mathrm{Ru}(2)$ do indeed lean towards atom $\operatorname{Ru}(1)$ those on $\operatorname{Ru}(1)$ in turn lean towards atom $\mathrm{Si}(\mathbf{1})$ (see Table 2). The bending of equatorial carbonyl groups towards a terminal silyl group has been observed and discussed for compounds of the type $\left[\mathrm{R}_{3} \mathrm{SiCo}(\mathrm{CO})_{4}\right]$. ${ }^{9}$
The overall packing of the molecules in the crystal is illustrated in Figure 2. There are no significantly short intermolecular contacts.

We thank the S.R.C. for financial support, the Condon Computing Centre for facilities, and A. Brookes for crystals.
[4/1334 Received, 3vd July, 1974]
${ }^{9}$ A. D. Berry, E. R. Corey, A. P. Hagen, A. G. MacDiarmid, F. E. Saalfeld, and B. B. Wayland, J. Amer. Chem. Soc., 1970, 92, 1940.

[^0]: * For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
 ${ }^{1}$ A. Brookes, J. Howard, S. A. R. Knox, V. Riera, F. G. A. Stone, and P. Woodward, J.C.S. Chem. Comm., 1973, 727.
 ${ }^{2}$ A. Modinos and P. Woodward, J.C.S. Dalton, in the press.

[^1]: * In a preliminary communication on the preparation and structural characterisation of this compound, ${ }^{1}$ the Figure inadvertently showed one of the $\mathrm{Si}-\mathrm{Me}$ bonds pointing backwards instead of forwards.
 ${ }^{5}$ R. Bau, J. C. Burt, S. A. R. Knox, R. M. Laine, R. P. 1’hillips, and F. (s. A. Stone, J.C.S. Chem. Comm., 1973, 726.

